Statistics and Numerical Method — Problem Set #2 (due 10/21 /2019)

1. Eigenvalue problem in hydrodynamics (6pts)
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These equations can be written in matrix form
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where W' = (p1,v51)7, and 4 is the constant matrix in the above.

(1). Let W = Weilkz—wt) , Where £ is given, and we would like to solve for w (as a function of k),
show that the above equation is reduced to an eigenvalue problem on matrix A. (1pt) WAIEIZ A w, - v_: W,

(2). Compute (analytically) the eigex},valyes and @igsnvectors of the above, and discuss their physical
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(3)- Real world is in 3D. Even we restrict our problem to 1D, one should not ignore v, and v,. %v v o,
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Discuss how the eigensystem changes with this addition, and explain their meanings. (2pts)

(4). Solving (magneto—)hydrodynamic equations sometimes requires to solve an eigensystem like
this (which contains additional dimensions corresponding to pressure/energy and magnetic fields),

What method would you recommend? (1pt) 6 &Lufe A ?‘2\/\2.“31%#;/% brm = <ﬂ>a," ) % Fne tmby

2. Poisson solver (24 pts) BEME Towow: 434 7 Triangylor + AR
We have introduced the Poisson equation in the lecture O Zaé o nf}jﬁ ‘i;w“ R N
Vo =p, (6)



where we have taken 47G = 1. In this problem, let us solve the Poisson equation in two dimensions
on a uniform, 20 x 20 rectangular grid whose coordinates span over ([-10,10],[—10,10]). This
means the size of each grid cell is 1 x 1, and the value of that cell is defined at cell centers [e.g.,
z; =-10+ (1 - 0.5), y; = —10+ (j — 0.5)].

Using finite difference, this system of equations (400 in total!) can be expressed as
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: z *7'. }_ ) Adc%ltfbnal boundary conditions must also be prescribed, and we set ® = 0 at T,y = £10. To
Sl ax ’“’Vlﬂ implement this boundary condition, you will need to include one additional “ghost cell” surrounding
. é‘{w e% i your grid, and enforce, e.g., Do,j = -1, PNy = —®y ; (and similar in two other boundaries),
ihih~ $q,7° (3 S0 that one finds & = 0 at the grid boundary after averaging the last grid cell and the ghost cell.
1o 25 Note that this boundary condition must be enforced after every numerical step.

“4 244924 L0 solve the above equations, we ask you to write your own solver in your favorite programming
VL P @ TZIRECYY . . . . - .
2 5BE Bnnd language using the following iterative methods: a). Jacobi; b). Gauss-Seidel; c). Successive over-
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.., relaxation with relaxation factor w = 1.5: d). Steepest descent; e). Conjugate gradient.
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Gu; 4] i ":1). How many iterations are required for each of the methods to converge to within ||R||; < 1067
©y 1400 .

W 1 /===-Show the converged solution. To better present your results, we further ask you to calculate the
- §.3‘ o residual vector R (i.e. a 20 x 20 matrix) for up to 100 steps, and plot ||R||2 as a function of number

Hu0m,
of iterations. Please attach the original code that should be properly documented. (4 pts for each)?&‘”ﬁa code

2). Further discuss the computation cost per iteration for each method. (4pts) dose ¥ Gty - So:dat. SoR %iﬁ?& W2
3. Ionization equilibrium (10 pts) Steay “‘C‘::‘i“;:”ﬁ it % ;’ 4;%;
Level of ionization plays an important role in the dynamics of the diffuse interstellar gas. It strongly Zﬂ.‘ Yo e (£
affects heating and cooling processes, as well as the level of coupling between gas and magnetic mix-d
fields. In this problem, we consider a toy model of ionization equilibrium applicable to the dense & X7 e
molecular cloud and protoplanetary disks, first proposed by Oppenheimer & Dalgarno (1974). In {*;mi%, 4%
this model, there are five species and four reactions, and by assuming equilibrium states, electron M&; )
abundance z. = n./n < 1 is found to be determined by
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where & = 3x 1075(T/K)~1/2 cm3 s~1, y = 3x10~2 cm? sy B=3x10"Y(T/K)~1/2 cm3 s~1, are
the reaction rate coefficients for dissociative and radiative recombinations, and charge exchanges,
¢ =10717 57! is the ionization rate, and ) is the abundance “metal” elements (Mg or Fe). This
equation can be solved numerically to obtain z, as a function of n, T and ;. M@ POz % ta ploarg-tb
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1). Show that this equation has only one positive root. Then discuss the (analytic) lower and uppi?x‘xc of %:‘ o °0 f)“
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bounds of this root (i.e., bracketing). (2 pts) f"b‘lé\ogo(aal‘b Poa wd T

2). Fix T = 30K, n = 10° cm™3, and z; = 10~12. Write and attach your own code to solve this $i. 48 - ithanv

" function numerically using the following methods: a). Bisection; b). Secant method; ¢). Newton-

Newts» Het93,19  Raphson method. Discuss how to robustly choose the initial trial value. Show the solution, and
#ptreid ¥ &is Mu plot the relative error (lz: — *|) as a function of iteration step ¢ till convergence. (2 pts each)
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e € Qo er J% 3). Using your favorite method, calculate z, as a function of n for n = 104 em™3 to n = 10 cm3,
¥t 5% assuming a). T = 20K, 2, = 1071% b). T = 20K, zp = 10712 ¢). T = 100K, 5, = 10~12. (2pts)
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